Blogia
Aula Virtual de Gasotecnia - UNEFA Extensión La Isabelica

De regreso a las actividades virtuales!!! y de paso a vacaciones de navidad!!!

De regreso a las actividades virtuales!!! y de paso a vacaciones de navidad!!!

Buenos Días!!!

Vaya... este segundo corte se me ha hecho extremadamente complicado mantener activo el "Aula Virtual"... pero aquí estamos de regreso...

Ya están listas las notas del segundo corte, como ya saben, y están disponibles en el espacio público, ya ustedes tienen la dirección electrónica... A las secciones les anuncio que trataré de llevar las notas impresas hoy Jueves 10/12/2009, si no, les consultaré para que me las firmen el viernes o el sábado, porque tengo que entregarlas, como fecha tope el 12/12/2009...

Estuve revisando sus últimas participaciones y debo confesarles que me han dejado bastante decepcionado, ya que hay demasiados comentarios similares (no creo que no tuvieran la malsana idea de no revisar otra página que no fuera Wikipedia) y muchos otros que son "copia y pega" descarados (tanto que algunos hasta dejaron lo de "Ir a navegación, búsqueda" del Wikipedia)... De allí que sus notas de las actividades virtuales reflejen esta situación...

Durante este período vacacional voy a colocar una o dos actividades para compensar el período de inactividad, que serán calificadas para el tercer corte... La primera actividad será que comenten sobre los gases ideales: ¿por qué se pueden establecer las propiedades de los gases reales desde la teoría de gases ideales?¿cuales son las condiciones que deben cumplirse para esta aproximación?...

Saludos!!! y Felices Vacaciones de Navidad y Año Nuevo!!! Los quiero ver el 12 de Enero!!!

17 comentarios

rubenangel borges 005 pq -

Concepto de Gas Ideal y diferencia entre Gas Ideal y Real.
Los Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llama gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.
1. - Un gas esta formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.
2. - Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.
3. - El numero total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio,
4. - El volumen de las moléculas es una fracción despresiablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el liquida pueden ser miles de veces menor que la del gas se condensa. De aquí que nuestra suposición sea posible.
5. - No actuan fuerzas apresiables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas sean tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que supongamos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.
6. - Los choques son elasticos y de duración despresiable. En los choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempo de choque es despreciable comparado con el tiempo que transcurre entre el choque de moléculas, la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo. (2)

Ecuación General de los Gases
En las leyes de los gases, la de Boyle, la de Charles y la Gay-Lussac, la masa del gas es fija y una de las tres variables, la temperatura, presión o el volumen, también es constante. Utilizando una nueva ecuación, no solo podemos variar la masa, sino también la temperatura, la presión y el volumen. La ecuación es:
PV = nRT
De esta ecuación se despejan las siguientes incógnitas.
Volumen
Es la cantidad de espacio que tiene un recipiente. Medidos en Litros o en algunos de sus derivados.
V=nRT
P
Presión
Fuerza que ejerce el contenido de un recipiente, al recipiente.
P=nRT
V
Temperatura
Es la medida de calor que presenta un elemento. Es medida en oK
T=PV
nR
Número de partículas
Cantidad de partes (moles) presentes.
n=PV
RT
Características de Gas Ideal
Se considera que un gas ideal presenta las siguientes características:
• El número de moléculas es despreciable comparado con el volumen total de un gas.
• No hay fuerza de atracción entre las moléculas.
• Las colisiones son perfectamente elásticas.
• Evitando las temperaturas extremadamente bajas y las presiones muy elevadas, podemos considerar que los gases reales se comportan como gases ideales. (2)
Propiedades de los gases
Los gases tienen 3 propiedades características: (1) son fáciles de comprimir, (2) se expanden hasta llenar el contenedor, y (3) ocupan mas espacio que los sólidos o líquidos que los conforman.
• COMPRESIBILIDAD
Una combustión interna de un motor provee un buen ejemplo de la facilidad con la cual los gases pueden ser comprimidos. En un motor de cuatro pistones, el pistón es primero halado del cilindro para crear un vacío parcial, es luego empujado dentro del cilindro, comprimiendo la mezcla de gasolina/aire a una fracción de su volumen original. (5)
• EXPANDIBILIDAD
Cualquiera que halla caminado en una cocina a donde se hornea un pan, ha experimentado el hecho de que los gases se expanden hasta llenar su contenedor, mientras que el aroma del pan llena la cocina. Desgraciadamente la misma cosa sucede cuando alguien rompe un huevo podrido y el olor característico del sulfito de hidrógeno (H2S), rápidamente se esparce en la habitación, eso es porque los gases se expanden para llenar su contenedor. Por lo cual es sano asumir que el volumen de un gas es igual al volumen de su contenedor. (5)
• VOLUMEN DEL GAS VS. VOLUMEN DEL SÓLIDO
La diferencia entre el volumen de un gas y el volumen de un líquido o sólido que lo forma, puede ser ilustrado con el siguiente ejemplo. Un gramo de oxígeno líquido en su punto de ebullición (-183oC) tiene un volumen de 0.894 mL. La misma cantidad de O2 gas a 0oC la presión atmosférica tiene un volumen de 700 mL, el cual es casi 800 veces más grande. Resultados similares son obtenidos cuando el volumen de los sólidos y gases son comparados. Un gramo de CO2 sólido tiene un volumen de 0.641 mL. a 0oC y la presión atmosférica tiene un volumen de 556 mL, el cual es mas que 850 veces más grande. Como regla general, el volumen de un líquido o sólido incrementa por un factor de 800 veces cuando formas gas.
La consecuencia de este enorme cambio en volumen es frecuentemente usado para hacer trabajos. El motor a vapor, esta basado en el hecho de que el agua hierve para formar gas (vapor) que tiene un mayor volumen. El gas entonces escapa del contenedor en el cual fue generado y el gas que se escapa es usado para hacer trabajar. El mismo principio se pone a prueba cuando utilizan dinamita para romper rocas. En 1867, Alfredo Nobel descubrió que el explosivo líquido tan peligroso conocido como nitroglicerina puede ser absorbido en barro o aserrín para producir un sólido que era mucho más estable y entonces con menos riesgos. Cuando la dinamita es detonada, la nitroglicerina se descompone para producir una mezcla de gases deCO2, H2O, N2, y O2
4 C3H5N3O9(l) è 12 CO2(g) + 10 H2O(g) + 6 N2(g) + O2(g)
Porque 29 moles de gas son producidos por cada 4 moles de líquido que se descompone, y cada mol de gas ocupa un volumen promedio de 800 veces más grande que un mol líquido, esta reacción produce una onda que destruye todo alrededor.
El mismo fenómeno ocurre en una escala mucho menor cuando hacemos estallar una cotufa. Cuando el maíz es calentado en aceite, los líquidos dentro del grano se convierte en gas. La presión que se acumula dentro del grano es enorme, causando que explote. (5)
• PRESIÓN VS FUERZA
El volumen de un gas es una de sus propiedades características. Otra propiedad es la presión que el gas libera en sus alrededores. Muchos de nosotros obtuvimos nuestra primera experiencia con la presión, al momento de ir a una estación de servicio para llenar los cauchos de la bicicleta. Dependiendo de tipo de bicicleta que tuviéramos, agregábamos aire a las llantas hasta que el medidor de presión estuviese entre 30 y 70 psi. (5)
Procesos de los Gases
Isotermica
Es aquella en que Ia temperatura permanece constante. Si en la ley de los gases perfectos: (6)
p V = PoV0
T T0
por permanecer la temperatura constante, se considera T = T0, y simplificando T, se obtiene:
pV = V0
de donde, expresandolo en forma de proporción, resulta:
p = V0
p0 V
En una transformación isoterma de un gas perfecto, Ia presión es inversamente proporcional al volumen.
Si en Ia fórmula correspondiente a una transformación isoterma:
P = V0
po V
se despeja la presión final, p:
p = Po V0
V
y se considera que el producto de la presión y volumen iniciales es constante, P0 V0 = constante, resulta la función: (6)
p = constante
V
que, representada en un diagrama de Clapeyron, es una hipérbole equilatera
El trabajo efectuado por el gas al aumentar su volumen desde el valor V0 hasta V será igual al area del rectángulo V0VAB; area que se calcula mediante el calculo integral y cuyo valor es:
V
L=2,303 po.V0 Iog Vo
fórmula que, considerando la ecuación de estado de los gases perfectos:
p V= n.R T è p0 V0 = n.R T0 (6)
puede también expresarse de la forma:
V
L =2,303 n R T0 log V0
Se dijo anteriormente que la energia interna de un gas dependia esencialmente de la temperatura; por lo tanto, si no cambia la temperatura del gas, tampoco cambiará su energia U = 0).interna (
U = 0 en el primer principio de laPor consigulente, haciendo termodinamica, resulta:
UL = Q - è L = Q – 0 è L = 0
En una transformación isoterma, el calor suministrado al sistema se emplea integramente en producir trabajo mecánico. (6)
Isobara
Es aquella en que la presión permanece constante. Si en la ley de los gases perfectos:
PV = p0 V0
En una transformación isóbara de un gas perfecto, el volumen es directamente proporcional a la temperatura absoluta.
Si en un diagrama de Clapeyron se representa la función correspondiente a una transformación isóbara (6)
Isocórica
Es aquella en la que el volumen permanece constante. Si en la ley de los gases perfectos:
pV = p0V0
T T0
En una transformación isocórica de un gas perfecto, la presión es directamente proporcional a la temperatura absoluta.
La consecuencia de que el volumen no pueda cambiar es que no cabe posibilidad de realizar trabajo de expansión ni de compresión del gas. (6)
Ley de Boyle
La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente. Esto quiere decir que si el volumen del contenedor aumenta, la presión en su interior disminuye y, viceversa, si el volumen del contenedor disminuye, la presión en su interior aumenta.
La ley de Boyle permite explicar la ventilación pulmonar, proceso por el que se intercambian gases entre la atmósfera y los alvéolos pulmonares. El aire entra en los pulmones porque la presión interna de estos es inferior a la atmosférica y por lo tanto existe un gradiente de presión. Inversamente, el aire es expulsado de los pulmones cuando estos ejercen sobre el aire contenido una presión superior a la atmosférica (1)
De la Ley de Boyle se sabe que la presión es directamente proporcional a la temperatura con lo cual la energía cinética se relaciona directamente con la temperatura del gas mediante la siguiente expresión:
Energía cinética promedio=3kT/2.
Donde k es la constante de Boltzmann. La temperatura es una medida de energía del movimiento térmico y a temperatura cero la energía alcanza un mínimo (el punto de movimiento cero se alcanza a 0 K). (3)
Ley de Charles
La ley de Charles establece que el volumen de un gas es directamente proporcional a su temperatura absoluta, asumiendo que la presión de mantiene constante. Esto quiere decir que en un recipiente flexible que se mantiene a presión constante, el aumento de temperatura conlleva un aumento del volumen. (1)
Ley de Dalton
La ley de Dalton establece que en una mezcla de gases cada gas ejerce su presión como si los restantes gases no estuvieran presentes. La presión específica de un determinado gas en una mezcla se llama presión parcial, p. La presión total de la mezcla se calcula simplemente sumando las presiones parciales de todos los gases que la componen. Por ejemplo, la presión atmosférica es:
Presión atmosférica (760 mm de Hg) = pO2 (160 mm Hg) + pN2 (593 mm Hg) + pCO2 (0.3 mm Hg) + pH2O (alrededor de 8 mm de Hg) (1)
Ley de Gay-Lussac
En 1802, Joseph Gay-Lussac publicó los resultados de sus experimentos que, ahora conocemos como Ley de Gay-Lussac. Esta ley establece, que, a volumen constante, la presión de una masa fija de un gas dado es directamente proporcional a la temperatura kelvin. (2)
Hipótesis de avogadro
La teoría de Dalton no explicaba por completo la ley de las proporciones múltiples y no distinguía entre átomos y moléculas. Así, no podía distinguir entre las posibles fórmulas del agua HO y H2O2, ni podía explicar por qué la densidad del vapor de agua, suponiendo que su fórmula fuera HO, era menor que la del oxígeno, suponiendo que su fórmula fuera O. El físico italiano Amedeo Avogadro encontró la solución a esos problemas en 1811. Sugirió que a una temperatura y presión dadas, el número de partículas en volúmenes iguales de gases era el mismo, e introdujo también la distinción entre átomos y moléculas. Cuando el oxígeno se combinaba con hidrógeno, un átomo doble de oxígeno (molécula en nuestros términos) se dividía, y luego cada átomo de oxígeno se combinaba con dos átomos de hidrógeno, dando la fórmula molecular de H2O para el agua y O2 y H2 para las moléculas de oxígeno e hidrógeno, respectivamente.
Las ideas de Avogadro fueron ignoradas durante casi 50 años, tiempo en el que prevaleció una gran confusión en los cálculos de los químicos. En 1860 el químico italiano Stanislao Cannizzaro volvió a introducir la hipótesis de Avogadro. Por esta época, a los químicos les parecía más conveniente elegir la masa atómica del oxígeno, 16, como valor de referencia con el que relacionar las masas atómicas de los demás elementos, en lugar del valor 1 del hidrógeno, como había hecho Dalton. La masa molecular del oxígeno, 32, se usaba internacionalmente y se llamaba masa molecular del oxígeno expresada en gramos, o simplemente 1 mol de oxígeno. Los cálculos químicos se normalizaron y empezaron a escribirse fórmulas fijas. Por la cual, las partículas contenidas en cada mol de cualquier elemento es igual a un número específico: 6,022x1023. (4)
Propiedades de los gases
El estado gaseoso es un estado disperso de la materia, es decir , que las moléculas del gas están separadas unas de otras por distancias mucho mayores del tamaño del diámetro real de las moléculas. Resuelta entonces, que el volumen ocupado por el gas (V) depende de la presión (P), la temperatura (T) y de la cantidad o numero de moles ( n).
Las propiedades de la materia en estado gaseoso son:
1. Se adaptan a la forma y el volumen del recipiente que los contiene. Un gas, al cambiar de recipiente, se expande o se comprime, de manera que ocupa todo el volumen y toma la forma de su nuevo recipiente.
2. Se dejan comprimir fácilmente. Al existir espacios intermoleculares, las moléculas se pueden acercar unas a otras reduciendo su volumen, cuando aplicamos una presión.
3. Se difunden fácilmente. Al no existir fuerza de atracción intermolecular entre sus partículas, los gases se esparcen en forma espontánea.
4. Se dilatan, la energía cinética promedio de sus moléculas es directamente proporcional a la temperatura aplicada.
Variables que afectan el comportamiento de los gases
1. PRESIÓN
Es la fuerza ejercida por unidad de área. En los gases esta fuerza actúa en forma uniforme sobre todas las partes del recipiente.
La presión atmosférica es la fuerza ejercida por la atmósfera sobre los cuerpos que están en la superficie terrestre. Se origina del peso del aire que la forma. Mientras más alto se halle un cuerpo menos aire hay por encima de él, por consiguiente la presión sobre él será menor.
2. TEMPERATURA
Es una medida de la intensidad del calor, y el calor a su vez es una forma de energía que podemos medir en unidades de calorías. Cuando un cuerpo caliente se coloca en contacto con uno frío, el calor fluye del cuerpo caliente al cuerpo frío.
La temperatura de un gas es proporcional a la energía cinética media de las moléculas del gas. A mayor energía cinética mayor temperatura y viceversa.
La temperatura de los gases se expresa en grados kelvin.


3. CANTIDAD
La cantidad de un gas se puede medir en unidades de masa, usualmente en gramos. De acuerdo con el sistema de unidades SI, la cantidad también se expresa mediante el número de moles de sustancia, esta puede calcularse dividiendo el peso del gas por su peso molecular.
4. VOLUMEN
Es el espacio ocupado por un cuerpo.
5. DENSIDAD
Es la relación que se establece entre el peso molecular en gramos de un gas y su volumen molar en litros.
Gas Real
Los gases reales son los que en condiciones ordinarias de temperatura y presión se comportan como gases ideales; pero si la temperatura es muy baja o la presión muy alta, las propiedades de los gases reales se desvían en forma considerable de las de gases ideales.
Concepto de Gas Ideal y diferencia entre Gas Ideal y Real.
Los Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llama gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.
1. - Un gas esta formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.
2. - Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.
3. - El numero total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio.

raigelys querales C.I:19525349 seccion 005 ing petroquimica -

Los Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llama gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.

a. - Un gas esta formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.

b. - Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.

c. - El numero total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio,

d. - El volumen de las moléculas es una fracción despresiablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el liquida pueden ser miles de veces menor que la del gas se condensa. De aquí que nuestra suposición sea posible.

e. - No actuan fuerzas apresiables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas sean tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que supongamos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.

f. - Los choques son elasticos y de duración despresiable. En los choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempode choque es despreciable comparado con el tiempo que transcurre entre el choque de moléculas, la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo

jonathan quiñones C.I:19479058 petroquimica 005 -

Según la teoría atómica las moléculas pueden tener o no cierta libertad de movimientos en el espacio; estos grados de libertad microscópicos están asociados con el concepto de orden macroscópico. Las libertad de movimiento de las moléculas de un sólido está restringida a pequeñas vibraciones; en cambio, las moléculas de un gas se mueven aleatoriamente, y sólo están limitadas por las paredes del recipiente que las contiene.

Se han desarrollado leyes empíricas que relacionan las variables macroscópicas en base a las experiencias en laboratorio realizadas. En los gases ideales, estas variables incluyen la presión (p), el volumen (V) y la temperatura (T).

La ley de Boyle - Mariotte relaciona inversamente las proporciones de volumen y presión de un gas, manteniendo la temperatura constante: P1. V1 = P2 . V2

La ley de Gay-Lussac afirma que el volumen de un gas, a presión constante, es directamente proporcional a la temperatura absoluta: *

La ley de Charles sostiene que, a volumen constante, la presión de un gas es directamente proporcional a la temperatura absoluta del sistema: *

* En ambos casos la temperatura se mide en kelvin (273 ºK = 0ºC) ya que no podemos dividir por cero, no existe resultado.

De las tres se deduce la ley universal de los gases:



norgelis campos. C.I::19772161 ing petroqui,mica 005 -

Ley de los Gases Ideales PV=nRT
El Gas Ideal, es aquel que cumple estrictamente con las leyes enunciadas por Boyle, Charles; etc. y el principio de Avogadro. En un intento de comprender porque la relación PV / T, es constante para todos los gases, los científicos crear un modelo de Gas Ideal. los supuestos relativos a este son los siguientes:
Todas las moléculas del gas ideal, tienen las mismas masas y se mueven al azar. Las moléculas son muy pequeñas y la distancia entre las mismas es muy grande. Entre las moléculas, no actúa ninguna fuerza, y en el único caso en que se influyen unas a otras es cuando chocan.
Cuando una molécula choca con la pared del continente o con otra molécula, no hay perdida de energía cinética. La fuerza gravitatoria, que ejerce la tierra sobre las moléculas, se considera despreciable por lo que a su efecto sobre el movimiento de las moléculas se refiere. Las moléculas se mueven a tal velocidad que chocan con la pared del continente o entre sí antes de que la gravedad pueda influir de modo apreciable en su movimiento

juan pabon CI: 84.034.778 INGENIERIA PETROQUIMICA SECCION: I 005 -


PROPIEDADES CARACTERÍSTICAS DE LOS GASES

Los gases se dilatan : DILATACIÓN. Se llama dilatación al aumento del volumen debido exclusivamente a un aumento de temperatura (es el caso más escandaloso). Cada 100ºC de calentamiento, el volumen se incrementa un 37% (es siempre el mismo sea cual sea el gas)

Los gases se DIFUNDEN: DIFUSIÓN. Consiste en la capacidad que tiene una porción gaseosa de llenar todo su recipiente sin que nadie le obligue a ello (gracias a ello exixte la atmósfera). Ej.:escape de gas butano, el olor de un perfume. Le permite a los gases formar MEZCLAS HOMOGÉNEAS SIEMPRE.



joseluis figueira ING.Petroquimica seccion:I-005 -

Es claro que podemos reducir su densidad, retirando algo de gas en el recipiente, o colocando el gas en un recipiente más grande. Encontramos experimentalmente que a densidades lo bastante pequeñas, todos los gases tienden a mostrar ciertas relaciones simples entre las variables termodinámicas p,V y T. Esto sugiere el concepto de un gas ideal, uno que tendrá el mismo comportamiento simple, bajo todas las condiciones de temperatura y presión.

Dado cualquier gas en un estado de equilibrio térmico, podemos medir su presión p, su temperatura T y su volumen V. Para valores suficientes pequeños la densidad, los experimentos demuestran que (1) para una masa dada de gas que se mantiene a temperatura constante, la presión es inversamente proporcional al volumen (ley de Boyle), y (2) para una masa dada de gas que se mantiene a presión constante, el volumen es directamente proporcional a la temperatura (ley de Charles y Gay Lussac). Podemos resumir estos resultados experimentales por medio de la relación:

una constante (para una masa fija de gas).

El volumen ocupado por un gas a una presión y temperaturas dadas, es proporcional a la masa del gas. Así, la constante de la ecuación una constante, también debe ser proporcional a la masa del gas, por ello escribimos la constante de la ecuación una constante; como nR, donde n es el numero de moles de gas en la muestra y R es una constante que debe determinarse en forma experimental para cada gas. Los experimentos demuestran que, a densidades suficientes pequeñas, R tiene el mismo valor para todos los gases, a saber,R se llama la constante universal de los gases. Con esto escribimos la ecuación una constante, en la forma:

pV=nRT,

y definimos a un gas ideal, como aquel que obedece esta relación bajo todas las condiciones. No existe algo que seaen verdad un gas ideal, pero sigue siendo concepto muy util y sencillo, relacionado realmente, con el hecho que todos los gases reales se aproximan a la abtracción de los gases ideales en su comportamiento, siempre que la densidad sea suficientemente pequeña. pV=nRT se llama ecuación de estado de un gas ideal.

Si pudieramos llenar al bulbo de un termonetro de gas (ideal) a volumen constante, un gas ideal, de veriamos, deacuerdo con la ecuación pV=nRT, que podemos definir la temperatura en terminos de sus lecturas de presión; esto es: (gas ideal).

Aquí es la presión del gas en el punto triple del agua, en el que la temperatura es por definición 273.16 K. En la practica, debemos llenar nuestro termometro con un gas real y medir la temperatura extrapolando a la densidad cero, usando la ecuación:

(gas real).
Toda las masas gaseosas experimentan variaciones de presión, volumen y temperatura que se rigen por las siguientes leyes:

primera ley (Boyle-Mariotte)

Los volúmenes ocupados por una misma masa gaseosa conservándose su temperatura constante, son inversamente proporcionales a la presión que soporta.

Formula
interpretación
observación


V= volumen inicial

V´=volumen final

P= presión inicial

P´=Presión final
GASES REALES
Las condiciones o postulados en que se basa la teoría cinética de los gases no se pueden cumplir y la situación en que más se aproximan a ellas es cuando la presión y la temperatura son bajas; cuando éstas son altas el comportamiento del gas se aleja de tales postulados, especialmente en lo relacionado a que no hay interacción entre las moléculas de tipo gravitacional, eléctrica o electromagnética y a que el volumen ocupado por las moléculas es despreciable comparado con el volumen total ocupado por el gas; en este caso no se habla de gases ideales sino de gases reales.

Como el gas real no se ajusta a la teoría cinética de los gases tampoco se ajusta a la ecuación de estado y se hace necesario establecer una ecuación de estado para gases reales.

La ecuación más sencilla y la más conocida para analizar el comportamiento de los gases reales presenta la siguiente forma:

P.V = Z.R.T (1)

P: presión absoluta.

v: volumen.

R: constante universal de los gases.

T: temperatura absoluta.

Z se puede considerar como un factor de corrección para que la ecuación de estado se pueda seguir aplicando a los gases reales. En realidad Z corrige los valores de presión y volumen leídos para llevarlos a los verdaderos valores de presión y volumen que se tendrían si el mol de gas se comportara a la temperatura T como ideal. Z se conoce como factor de supercompresibilidad, y depende del tipo de gas y las condiciones de presión y temperatura a que se encuentra; cuando éstas son bajas, próximas a las condiciones normales, Z se considera igual a uno.

Cuando se trata de gases reales, la presión indicada por el registrador de presión es menor que la presión a la que se encontraría el gas si fuera ideal pues hay que descontar las interacciones entre las moléculas y por otra parte el volumen disponible para el movimiento de las moléculas es menor que el volumen del recipiente pues no se puede despreciar el volumen ocupado por las moléculas.

Mezclas de Gases Reales
Cuando se trata de mezclas no se habla de peso molecular sino de peso molecular aparente y se calcula de acuerdo con la composición aplicando la ecuación:

Ma = Σxi.Mi (2)

donde:

xi: fracción molar del componente i respectivamente.

Mi: peso molecular del componente i respectivamente.

Ma: peso molecular aparente.

De igual manera si se quiere expresar la composición en porcentaje por peso se aplica la ecuación:

(3)

Para calcular la densidad (ρ) se aplica la ecuación:

ρ = P.M/Z.RT.T = m/V (4)
El uso más importante de una ecuación de estado es para predecir el estado de gases y líquidos. Una de las ecuaciones de estado más simples para este propósito es la ecuación de estado del gas ideal, que es aproximable al comportamiento de los gases a bajas presiones y temperaturas mayores a la temperatura crítica. Sin embargo, esta ecuación pierde mucha exactitud a altas presiones y bajas temperaturas, y no es capaz de predecir la condensación de gas en líquido. Por ello, existe una serie de ecuaciones de estado más precisas para gases y líquidos. Entre las ecuaciones de estado más empleadas sobresalen las ecuaciones cúbicas de estado. De ellas, las más conocidas y utilizadas son la ecuación de Peng-Robinson (PR) y la ecuación de Redlich-Kwong-Soave (RKS). Hasta ahora no se ha encontrado ninguna ecuación de estado que prediga correctamente el comportamiento de todas las sustancias en todas las condiciones.

Además de predecir el comportamiento de gases y líquidos, también hay ecuaciones de estado que predicen el volumen de los sólidos, incluyendo la transición de los sólidos entre los diferentes estados cristalinos. Hay ecuaciones que modelan el interior de las estrellas, incluyendo las estrellas de neutrones. Un concepto relacionado es la ecuación de estado del fluido perfecto, usada en Cosmología.
R=8.314 J/mol K = 1.986
cal/mol K

robert chacon -

buenas tardes profe, bueno para mi los gases manifestarían un comportamiento muy parecido al ideal del alto calor y también por el mal comportamiento que presentan las bajas presiones de todos los gases". Me parece que es necesario formalizar un poco el texto, como por ejemplo "pueden tomar la forma de lo que quieran". También creo que habría que decir que los gases manifestarían un comportamiento muy parecido al ideal del alto calor y también por el mal comportamiento que presentan las bajas presiones de todos los gases".

yessica flores -

Yessica Flores
19.992.706
Ing.Civil I-003


Para definir un patrón de gas que sirva para establecer reglas de comportamiento se crea el concepto de gas ideal, este gas ideal cumple las condiciones siguientes:
•Ocupa el volumen del recipiente que lo contiene.
•Está formado por moléculas.
•Estas moléculas se mueven individualmente y al azar en todas direcciones.
•La interacción entre las moléculas se reduce solo a su choque.
•Los choques entre las moléculas son completamente elásticos (no hay pérdidas de energía).
•Los choque son instantáneos (el tiempo durante el choque es cero).

Los gases reales, siempre que no estén sometidos a condiciones extremas de presión y temperatura, cumplirán muy aproximadamente las reglas establecidas para los gases ideales.

milianyer landaeta -

milianyer landaeta
Ing.Civil 003


La condicion de un gas ideal viene dada por su ciclo de adaptacion por ejemlo si un gas al cambiarlo de recipiente se expande o se comprime, partiendo de estas caracteristicas podemos decir que un gas real depende de la dencidad y la variacion de su temperatura teniendo como base un gas ideal y por ello se establece que dependiendo del estado de un gas se hace notar el gas real como sube o baja su presion atravez del oxigeno,hidrogeno u otros los cuales se desvian ede una o otra forma considerandoce las condisiones de un gas ideal

joel pereira C.I: 21199697 I005D ing. petroquimica II semestres -

La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.

Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834.

Ley de Boyle-Mariotte [editar]Artículo principal: Ley de Boyle-Mariotte
También llamado proceso isotérmico. Afirma que, a temperatura y cantidad de materia constante, el volumen de un gas es inversamente proporcional a su presión:


Leyes de Charles y Gay-Lussac [editar]Artículo principal: Ley de Charles y Gay-Lussac
En 1802, Louis Gay Lussac publica los resultados de sus experimentos, basados en los que Jacques Charles hizo en el 1787. Se considera así al proceso isobárico para la Ley de Charles, y al isocoro (o isostérico) para la ley de Gay Lussac.

Proceso isobaro (de Gay Lussac) [editar]
Proceso isocoro (de Charles) [editar]
Ley de Avogadro [editar]La Ley de Avogadro fue expuesta por Amedeo Avogadro en 1811 y complementaba a las de Boyle, Charles y Gay-Lussac. Asegura que en un proceso a presión y temperatura constante (isobaro e isotermo), el volumen de cualquier gas es proporcional al número de moles presente, de tal modo que:


Esta ecuación es válida incluso para gases ideales distintos. Una forma alternativa de enunciar esta ley es:





--------------------------------------------------------------------------------

El volumen que ocupa un mol de cualquier gas ideal a una temperatura y presión dadas siempre es el mismo.

La ecuación de Van der Waals se diferencia de las de los gases ideales por la presencia de dos términos de corrección; uno corrige el volumen, el otro modifica la presión.

- Los gases reales, a presiones y temperaturas cercanas a las ambientales, actúan como gases ideales.

Aunque los gases ideales resultan ser una importante aproximaci
´on en Termodin´amica, su comportamiento es muy diferente
del de los gases reales. A bajas temperaturas los gases reales experimentan
procesos de condensaci´on, transiciones de fase, etc.,
que nopresen tan los gases ideales.
Las desviaciones del comportamiento ideal, por ejemplo en
procesos de estrangulamiento, resultan ser de mucha utilidad
en determinados procesos industriales y en la F´ýsica de bajas
temperaturas.

jorman caraballo C.I:21021415 seccion I005D petroquimica II semestre -

Gas ideal : Una descripción macroscópica.

Hagamos que cierta cantidad de gas esté confinada en un recipiente del volumen V. Es claro que podemos reducir su densidad, retirando algo de gas en el recipiente, o colocando el gas en un recipiente más grande. Encontramos experimentalmente que a densidades lo bastante pequeñas, todos los gases tienden a mostrar ciertas relaciones simples entre las variables termodinámicas p,V y T. Esto sugiere el concepto de un gas ideal, uno que tendrá el mismo comportamiento simple, bajo todas las condiciones de temperatura y presión.

Dado cualquier gas en un estado de equilibrio térmico, podemos medir su presión p, su temperatura T y su volumen V. Para valores suficientes pequeños la densidad, los experimentos demuestran que (1) para una masa dada de gas que se mantiene a temperatura constante, la presión es inversamente proporcional al volumen (ley de Boyle), y (2) para una masa dada de gas que se mantiene a presión constante, el volumen es directamente proporcional a la temperatura (ley de Charles y Gay Lussac). Podemos resumir estos resultados experimentales por medio de la relación:

una constante (para una masa fija de gas).

El volumen ocupado por un gas a una presión y temperaturas dadas, es proporcional a la masa del gas. Así, la constante de la ecuación una constante, también debe ser proporcional a la masa del gas, por ello escribimos la constante de la ecuación una constante; como nR, donde n es el numero de moles de gas en la muestra y R es una constante que debe determinarse en forma experimental para cada gas. Los experimentos demuestran que, a densidades suficientes pequeñas, R tiene el mismo valor para todos los gases, a saber,R se llama la constante universal de los gases. Con esto escribimos la ecuación una constante, en la forma:

pV=nRT,

y definimos a un gas ideal, como aquel que obedece esta relación bajo todas las condiciones. No existe algo que seaen verdad un gas ideal, pero sigue siendo concepto muy util y sencillo, relacionado realmente, con el hecho que todos los gases reales se aproximan a la abtracción de los gases ideales en su comportamiento, siempre que la densidad sea suficientemente pequeña. pV=nRT se llama ecuación de estado de un gas ideal.

Si pudieramos llenar al bulbo de un termonetro de gas (ideal) a volumen constante, un gas ideal, de veriamos, deacuerdo con la ecuación pV=nRT, que podemos definir la temperatura en terminos de sus lecturas de presión; esto es: (gas ideal).

Aquí es la presión del gas en el punto triple del agua, en el que la temperatura es por definición 273.16 K. En la practica, debemos llenar nuestro termometro con un gas real y medir la temperatura extrapolando a la densidad cero, usando la ecuación:

(gas real).
Toda las masas gaseosas experimentan variaciones de presión, volumen y temperatura que se rigen por las siguientes leyes:

primera ley (Boyle-Mariotte)

Los volúmenes ocupados por una misma masa gaseosa conservándose su temperatura constante, son inversamente proporcionales a la presión que soporta.

Formula
interpretación
observación


V= volumen inicial

V´=volumen final

P= presión inicial

P´=Presión final
GASES REALES
Las condiciones o postulados en que se basa la teoría cinética de los gases no se pueden cumplir y la situación en que más se aproximan a ellas es cuando la presión y la temperatura son bajas; cuando éstas son altas el comportamiento del gas se aleja de tales postulados, especialmente en lo relacionado a que no hay interacción entre las moléculas de tipo gravitacional, eléctrica o electromagnética y a que el volumen ocupado por las moléculas es despreciable comparado con el volumen total ocupado por el gas; en este caso no se habla de gases ideales sino de gases reales.

Como el gas real no se ajusta a la teoría cinética de los gases tampoco se ajusta a la ecuación de estado y se hace necesario establecer una ecuación de estado para gases reales.

La ecuación más sencilla y la más conocida para analizar el comportamiento de los gases reales presenta la siguiente forma:

P.V = Z.R.T (1)

P: presión absoluta.

v: volumen.

R: constante universal de los gases.

T: temperatura absoluta.

Z se puede considerar como un factor de corrección para que la ecuación de estado se pueda seguir aplicando a los gases reales. En realidad Z corrige los valores de presión y volumen leídos para llevarlos a los verdaderos valores de presión y volumen que se tendrían si el mol de gas se comportara a la temperatura T como ideal. Z se conoce como factor de supercompresibilidad, y depende del tipo de gas y las condiciones de presión y temperatura a que se encuentra; cuando éstas son bajas, próximas a las condiciones normales, Z se considera igual a uno.

Cuando se trata de gases reales, la presión indicada por el registrador de presión es menor que la presión a la que se encontraría el gas si fuera ideal pues hay que descontar las interacciones entre las moléculas y por otra parte el volumen disponible para el movimiento de las moléculas es menor que el volumen del recipiente pues no se puede despreciar el volumen ocupado por las moléculas.

Mezclas de Gases Reales
Cuando se trata de mezclas no se habla de peso molecular sino de peso molecular aparente y se calcula de acuerdo con la composición aplicando la ecuación:

Ma = Σxi.Mi (2)

donde:

xi: fracción molar del componente i respectivamente.

Mi: peso molecular del componente i respectivamente.

Ma: peso molecular aparente.

De igual manera si se quiere expresar la composición en porcentaje por peso se aplica la ecuación:

(3)

Para calcular la densidad (ρ) se aplica la ecuación:

ρ = P.M/Z.RT.T = m/V (4)
El uso más importante de una ecuación de estado es para predecir el estado de gases y líquidos. Una de las ecuaciones de estado más simples para este propósito es la ecuación de estado del gas ideal, que es aproximable al comportamiento de los gases a bajas presiones y temperaturas mayores a la temperatura crítica. Sin embargo, esta ecuación pierde mucha exactitud a altas presiones y bajas temperaturas, y no es capaz de predecir la condensación de gas en líquido. Por ello, existe una serie de ecuaciones de estado más precisas para gases y líquidos. Entre las ecuaciones de estado más empleadas sobresalen las ecuaciones cúbicas de estado. De ellas, las más conocidas y utilizadas son la ecuación de Peng-Robinson (PR) y la ecuación de Redlich-Kwong-Soave (RKS). Hasta ahora no se ha encontrado ninguna ecuación de estado que prediga correctamente el comportamiento de todas las sustancias en todas las condiciones.

Además de predecir el comportamiento de gases y líquidos, también hay ecuaciones de estado que predicen el volumen de los sólidos, incluyendo la transición de los sólidos entre los diferentes estados cristalinos. Hay ecuaciones que modelan el interior de las estrellas, incluyendo las estrellas de neutrones. Un concepto relacionado es la ecuación de estado del fluido perfecto, usada en Cosmología.







R=8.314 J/mol K = 1.986 cal/mol K

jhon quevedo,seccion:I003 -

PROPIEDADES CARACTERÍSTICAS DE LOS GASES

Los gases se dilatan : DILATACIÓN. Se llama dilatación al aumento del volumen debido exclusivamente a un aumento de temperatura (es el caso más escandaloso). Cada 100ºC de calentamiento, el volumen se incrementa un 37% (es siempre el mismo sea cual sea el gas)

Los gases se DIFUNDEN: DIFUSIÓN. Consiste en la capacidad que tiene una porción gaseosa de llenar todo su recipiente sin que nadie le obligue a ello (gracias a ello exixte la atmósfera). Ej.:escape de gas butano, el olor de un perfume. Le permite a los gases formar MEZCLAS HOMOGÉNEAS SIEMPRE.



MODELO CINÉTICO-MOLECULAR


Es un modelo simple que describe cómo está hecha la materia y justifica los diferentes estados físicos, así como las principales transformaciones físicas. Se basa en:

La materia está constituida por partículas llamadas moléculas entre las cuales sólo hay espacio vacío. (MOLÉCULAS Y ESPACIO).

En el caso de los gases y de los líquidos, las moléculasestán en continuo movimiento, el cual es ALEATORIO.

Cuando se calienta un gas aumenta la velocidad con la que se mueven las moléculas, por lo cualla temperatura es un indicador del GRADO DE MOVILIDAD MOLECULAR.

Como consecuencia de lo anterior, las moléculas chocan contra las paredes de su recipientecontinuamente. Esto determina a nivel global, la presión de dicho gas.

En el estado gaseoso, las moléculas prácticamente están libres (no hay atracción entre ellas), por lo cual la distancia entre las moléculas es enorme. En el caso de los líquidos y sólidos, sí existen fuerzasde atracción entre moléculas, que reciben el nombre de FUERZAS MOLECULARES O DE ENLACE.

LEY DE LOS GASES IDEALES

GAS IDEAL: es un modelo de sustancia pero no es una sustancia gaseosa. No exixte.

Sería aquel gas que se comporta según el MCM. Un gas ideal estaría EXCENTO DE LA POSIBILIDAD DE CAMBIAR DE ESTADO.

Los gases reales se compordtan muy aproximadamente igual al gas ideal.

CAMBIOS FÍSICOS EN LOS GASES:


Cambios de estado.

Transformaciones mecánicas (se llaman así aquellas transformaciones en donde se altera el estado de un gas en el sentido de variar la presión, el volúmen, la temperatura y cantidad ( n), que son las llamadas variables de estado. Puedesn variar todas o sólo algunas de dichas variables. Seleccionamos aquellas transformaciones en donde dos variables permanecen fijas y varían otras dos.



JHON MONTOYA SECCIOON I-005 2 DO SEMESTRE ING. PETROQUIMICA -

¿por qué se pueden establecer las propiedades de los gases reales desde la teoría de gases ideales?

se pueden establecer ya que:

Gas ideal : Una descripción macroscópica.

Hagamos que cierta cantidad de gas esté confinada en un recipiente del volumen V. Es claro que podemos reducir su densidad, retirando algo de gas en el recipiente, o colocando el gas en un recipiente más grande. Encontramos experimentalmente que a densidades lo bastante pequeñas, todos los gases tienden a mostrar ciertas relaciones simples entre las variables termodinámicas p,V y T. Esto sugiere el concepto de un gas ideal, uno que tendrá el mismo comportamiento simple, bajo todas las condiciones de temperatura y presión.

Dado cualquier gas en un estado de equilibrio térmico, podemos medir su presión p, su temperatura T y su volumen V. Para valores suficientes pequeños la densidad, los experimentos demuestran que (1) para una masa dada de gas que se mantiene a temperatura constante, la presión es inversamente proporcional al volumen (ley de Boyle), y (2) para una masa dada de gas que se mantiene a presión constante, el volumen es directamente proporcional a la temperatura (ley de Charles y Gay Lussac). Podemos resumir estos resultados experimentales por medio de la relación:

una constante (para una masa fija de gas).

El volumen ocupado por un gas a una presión y temperaturas dadas, es proporcional a la masa del gas. Así, la constante de la ecuación una constante, también debe ser proporcional a la masa del gas, por ello escribimos la constante de la ecuación una constante; como nR, donde n es el numero de moles de gas en la muestra y R es una constante que debe determinarse en forma experimental para cada gas. Los experimentos demuestran que, a densidades suficientes pequeñas, R tiene el mismo valor para todos los gases, a saber,

R=8.314 J/mol K = 1.986 cal/mol K

R se llama la constante universal de los gases. Con esto escribimos la ecuación una constante, en la forma:

pV=nRT,

y definimos a un gas ideal, como aquel que obedece esta relación bajo todas las condiciones. No existe algo que seaen verdad un gas ideal, pero sigue siendo concepto muy util y sencillo, relacionado realmente, con el hecho que todos los gases reales se aproximan a la abtracción de los gases ideales en su comportamiento, siempre que la densidad sea suficientemente pequeña. pV=nRT se llama ecuación de estado de un gas ideal.

Si pudieramos llenar al bulbo de un termonetro de gas (ideal) a volumen constante, un gas ideal, de veriamos, deacuerdo con la ecuación pV=nRT, que podemos definir la temperatura en terminos de sus lecturas de presión; esto es: (gas ideal).

Aquí es la presión del gas en el punto triple del agua, en el que la temperatura es por definición 273.16 K. En la practica, debemos llenar nuestro termometro con un gas real y medir la temperatura extrapolando a la densidad cero, usando la ecuación:

(gas real).


¿cuales son las condiciones que deben cumplirse para esta aproximación?...

ademas de las condiciones mensionadas anteriormente como temperatura volumen y presion se pueden observar otras condiciones:

1.- Un gas esta formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.

2.- Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de si los hechos experimentales indican o no que nuestras predicciones son correctas.

3.- El numero total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio,

4.- El volumen de las moléculas es una fracción despreciablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el liquido puede ser miles de veces menor que la del gas se condensa, el volumen ocupado por el liquido puede ser miles de veces menor que el del gas. De aquí que nuestra suposición es posible.

5.- No actúan fuerzas apreciables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas son tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que suponemos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.

6.- Los choques son elásticos y de duración despreciable. En las choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempo de choque es despreciable comparado con el tiempo que transcurre entre los choques de moléculas, la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo.

teorileth chavez C.I:21097130 seccion:I005D petroquimica II semestre -

Ley de los gases Ideales

Según la teoría atómica las moléculas pueden tener o no cierta libertad de movimientos en el espacio; estos grados de libertad microscópicos están asociados con el concepto de orden macroscópico. Las libertad de movimiento de las moléculas de un sólido está restringida a pequeñas vibraciones; en cambio, las moléculas de un gas se mueven aleatoriamente, y sólo están limitadas por las paredes del recipiente que las contiene.

Se han desarrollado leyes empíricas que relacionan las variables macroscópicas en base a las experiencias en laboratorio realizadas. En los gases ideales, estas variables incluyen la presión (p), el volumen (V) y la temperatura (T).

La ley de Boyle - Mariotte relaciona inversamente las proporciones de volumen y presión de un gas, manteniendo la temperatura constante: P1. V1 = P2 . V2

La ley de Gay-Lussac afirma que el volumen de un gas, a presión constante, es directamente proporcional a la temperatura absoluta: *

La ley de Charles sostiene que, a volumen constante, la presión de un gas es directamente proporcional a la temperatura absoluta del sistema: *

* En ambos casos la temperatura se mide en kelvin (273 ºK = 0ºC) ya que no podemos dividir por cero, no existe resultado.
Teoría Cinética de los Gases

El comportamiento de los gases, enunciadas mediante las leyes anteriormente descriptas, pudo explicarse satisfactoriamente admitiendo la existencia del átomo.

El volumen de un gas: refleja simplemente la distribución de posiciones de las moléculas que lo componen. Más exactamente, la variable macroscópica V representa el espacio disponible para el movimiento de una molécula.

La presión de un gas, que puede medirse con manómetros situados en las paredes del recipiente, registra el cambio medio de momento lineal que experimentan las moléculas al chocar contra las paredes y rebotar en ellas.

La temperatura del gas es proporcional a la energía cinética media de las moléculas, por lo que depende del cuadrado de su velocidad.

La reducción de las variables macroscópicas a variables mecánicas como la posición, velocidad, momento lineal o energía cinética de las moléculas, que pueden relacionarse a través de las leyes de la mecánica de Newton, debería de proporcionar todas las leyes empíricas de los gases. En general, esto resulta ser cierto.

hipotesis de avogrado

Esta hipótesis establece que dos gases que posean el mismo volumen (a igual presión y temperatura) deben contener la misma cantidad de moléculas.

Cada molécula, dependiendo de los átomos que la compongan, deberán tener la misma masa. Es así que puede hallarse la masa relativa de un gas de acuerdo al volumen que ocupe. La hipótesis de Avogadro permitió determinar la masa molecular relativa de esos gases.

Analicemos el orden lógico que siguió:

La masa de 1 litro de cualquier gas es la masa de todas las moléculas de ese gas.

Un litro de cualquier gas contiene el mismo número de moléculas de cualquier otro gas

Por lo tanto, un litro de un gas posee el doble de masa de un litro otro gas si cada molécula del primer gas pesa el doble de la molécula del segundo gas.

En general las masas relativas de las moléculas de todos los gases pueden determinarse pesando volúmenes equivalentes de los gases.
Propiedades de los gases
Los gases tienen 3 propiedades características: (1) son fáciles de comprimir, (2) se expanden hasta llenar el contenedor, y (3) ocupan mas espacio que los sólidos o líquidos que los conforman.
Ley de Boyle
La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente. Esto quiere decir que si el volumen del contenedor aumenta, la presión en su interior disminuye y,viceversa, si el volumen del contenedor disminuye, la presión en su interior aumenta.
Ley de Charles
La ley de Charles establece que el volumen de un gas es directamente proporcional a su temperatura absoluta, asumiendo que la presión de mantiene constante. Esto quiere decir que en un recipiente flexible que se mantiene a presión constante,el aumento de temperatura conlleva un aumento del volumen.

Ley de Dalton
La ley de Dalton establece que en una mezcla de gases cada gas ejerce su presión como si los restantes gases no estuvieran presentes. La presión específica de un determinado gas en una mezcla se llama presión parcial, p. La presión total de la mezcla se calcula simplemente sumando las presiones parciales de todos los gases que la componen.
Ley de Gay Lussac
En 1802, Joseph Gay Lussac publicó los resultados de sus experimentos que, ahora conocemos como Ley de Gay Lussac. Esta ley establece, que, a volumen constante, la presión de una masa fija de un gas dado es directamente proporcional a la temperatura kelvin.

Los gases, aunque no se puedan ver, constituyen una gran parte de nuestro ambiente, y quehacer diario, ya que ellos son los responsables de transmitir: sonidos, olores, etc. Los gases poseen propiedades extraordinarias,como por ejemplo: que se puede comprimir a solamente una fracción de su volumen inicial, pueden llenar cualquier contenedor, o que el volumen de una gas comparado con el mismo componente, sólido o líquido tiene una diferencia de casi 800 veces la proporción. Esto hace posible de que una cantidad n de un gas puede entrar en un contenedor cualquiera y que este gas llenaría el contenedor

gas real

Las condiciones o postulados en que se basa la teoría cinética de los gases no se pueden cumplir y la situación en que más se aproximan a ellas es cuando la presión y la temperatura son bajas; cuando éstas son altas el comportamiento del gas se aleja de tales postulados, especialmente en lo relacionado a que no hay interacción entre las moléculas de tipo gravitacional, eléctrica o electromagnética y a que el volumen ocupado por las moléculas es despreciable comparado con el volumen total ocupado por el gas; en este caso no se habla de gases ideales sino de gases reales.

Como el gas real no se ajusta a la teoría cinética de los gases tampoco se ajusta a la ecuación de estado y se hace necesario establecer una ecuación de estado para gases reales.

La ecuación más sencilla y la más conocida para analizar el comportamiento de los gases reales presenta la siguiente forma:

P.V = Z.R.T (1)

P: presión absoluta.

v: volumen.

R: constante universal de los gases.

T: temperatura absoluta.

Z se puede considerar como un factor de corrección para que la ecuación de estado se pueda seguir aplicando a los gases reales. En realidad Z corrige los valores de presión y volumen leídos para llevarlos a los verdaderos valores de presión y volumen que se tendrían si el mol de gas se comportara a la temperatura T como ideal.
Mezclas de Gases Reales
Cuando se trata de mezclas no se habla de peso molecular sino de peso molecular aparente y se calcula de acuerdo con la composición aplicando la ecuación:

Ma = Σxi.Mi (2)

donde:

xi: fracción molar del componente i respectivamente.

Mi: peso molecular del componente i respectivamente.

Ma: peso molecular aparente.

De igual manera si se quiere expresar la composición en porcentaje por peso se aplica la ecuación:

(3)

Para calcular la densidad (ρ) se aplica la ecuación:

ρ = P.M/Z.RT.T = m/V (4)
Determinación del factor Z
Para poder aplicar la ecuación (1) se requiere conocer el factor Z, el cual, como ya se dijo, depende de las condiciones de presión y temperatura y del tipo de gas. El cálculo de Z se puede hacer a partir de correlaciones y se hará énfasis fundamentalmente en la correlación de Standing - Katz por ser la más conocida.

- Cálculo de Z para gases puros: En este caso se requiere conocer la temperatura y presión crítica del compuesto. Las condiciones críticas son características de cada componente y se pueden obtener de tablas de propiedades físicas.












jesiree diaz 20.194.534 ing.petroquimica 005 -

Concepto de Gas Ideal y diferencia entre Gas Ideal y Real.
Los Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llama gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.
1. - Un gas esta formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.
2. - Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.
3. - El numero total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio,
4. - El volumen de las moléculas es una fracción despresiablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el liquida pueden ser miles de veces menor que la del gas se condensa. De aquí que nuestra suposición sea posible.
5. - No actuan fuerzas apresiables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas sean tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que supongamos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.
6. - Los choques son elasticos y de duración despresiable. En los choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempo de choque es despreciable comparado con el tiempo que transcurre entre el choque de moléculas, la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo. (2)

Ecuación General de los Gases
En las leyes de los gases, la de Boyle, la de Charles y la Gay-Lussac, la masa del gas es fija y una de las tres variables, la temperatura, presión o el volumen, también es constante. Utilizando una nueva ecuación, no solo podemos variar la masa, sino también la temperatura, la presión y el volumen. La ecuación es:
PV = nRT
De esta ecuación se despejan las siguientes incógnitas.
Volumen
Es la cantidad de espacio que tiene un recipiente. Medidos en Litros o en algunos de sus derivados.
V=nRT
P
Presión
Fuerza que ejerce el contenido de un recipiente, al recipiente.
P=nRT
V
Temperatura
Es la medida de calor que presenta un elemento. Es medida en oK
T=PV
nR
Número de partículas
Cantidad de partes (moles) presentes.
n=PV
RT
Características de Gas Ideal
Se considera que un gas ideal presenta las siguientes características:
• El número de moléculas es despreciable comparado con el volumen total de un gas.
• No hay fuerza de atracción entre las moléculas.
• Las colisiones son perfectamente elásticas.
• Evitando las temperaturas extremadamente bajas y las presiones muy elevadas, podemos considerar que los gases reales se comportan como gases ideales. (2)
Propiedades de los gases
Los gases tienen 3 propiedades características: (1) son fáciles de comprimir, (2) se expanden hasta llenar el contenedor, y (3) ocupan mas espacio que los sólidos o líquidos que los conforman.
• COMPRESIBILIDAD
Una combustión interna de un motor provee un buen ejemplo de la facilidad con la cual los gases pueden ser comprimidos. En un motor de cuatro pistones, el pistón es primero halado del cilindro para crear un vacío parcial, es luego empujado dentro del cilindro, comprimiendo la mezcla de gasolina/aire a una fracción de su volumen original. (5)
• EXPANDIBILIDAD
Cualquiera que halla caminado en una cocina a donde se hornea un pan, ha experimentado el hecho de que los gases se expanden hasta llenar su contenedor, mientras que el aroma del pan llena la cocina. Desgraciadamente la misma cosa sucede cuando alguien rompe un huevo podrido y el olor característico del sulfito de hidrógeno (H2S), rápidamente se esparce en la habitación, eso es porque los gases se expanden para llenar su contenedor. Por lo cual es sano asumir que el volumen de un gas es igual al volumen de su contenedor. (5)
• VOLUMEN DEL GAS VS. VOLUMEN DEL SÓLIDO
La diferencia entre el volumen de un gas y el volumen de un líquido o sólido que lo forma, puede ser ilustrado con el siguiente ejemplo. Un gramo de oxígeno líquido en su punto de ebullición (-183oC) tiene un volumen de 0.894 mL. La misma cantidad de O2 gas a 0oC la presión atmosférica tiene un volumen de 700 mL, el cual es casi 800 veces más grande. Resultados similares son obtenidos cuando el volumen de los sólidos y gases son comparados. Un gramo de CO2 sólido tiene un volumen de 0.641 mL. a 0oC y la presión atmosférica tiene un volumen de 556 mL, el cual es mas que 850 veces más grande. Como regla general, el volumen de un líquido o sólido incrementa por un factor de 800 veces cuando formas gas.
La consecuencia de este enorme cambio en volumen es frecuentemente usado para hacer trabajos. El motor a vapor, esta basado en el hecho de que el agua hierve para formar gas (vapor) que tiene un mayor volumen. El gas entonces escapa del contenedor en el cual fue generado y el gas que se escapa es usado para hacer trabajar. El mismo principio se pone a prueba cuando utilizan dinamita para romper rocas. En 1867, Alfredo Nobel descubrió que el explosivo líquido tan peligroso conocido como nitroglicerina puede ser absorbido en barro o aserrín para producir un sólido que era mucho más estable y entonces con menos riesgos. Cuando la dinamita es detonada, la nitroglicerina se descompone para producir una mezcla de gases deCO2, H2O, N2, y O2
4 C3H5N3O9(l) è 12 CO2(g) + 10 H2O(g) + 6 N2(g) + O2(g)
Porque 29 moles de gas son producidos por cada 4 moles de líquido que se descompone, y cada mol de gas ocupa un volumen promedio de 800 veces más grande que un mol líquido, esta reacción produce una onda que destruye todo alrededor.
El mismo fenómeno ocurre en una escala mucho menor cuando hacemos estallar una cotufa. Cuando el maíz es calentado en aceite, los líquidos dentro del grano se convierte en gas. La presión que se acumula dentro del grano es enorme, causando que explote. (5)
• PRESIÓN VS FUERZA
El volumen de un gas es una de sus propiedades características. Otra propiedad es la presión que el gas libera en sus alrededores. Muchos de nosotros obtuvimos nuestra primera experiencia con la presión, al momento de ir a una estación de servicio para llenar los cauchos de la bicicleta. Dependiendo de tipo de bicicleta que tuviéramos, agregábamos aire a las llantas hasta que el medidor de presión estuviese entre 30 y 70 psi. (5)
Procesos de los Gases
Isotermica
Es aquella en que Ia temperatura permanece constante. Si en la ley de los gases perfectos: (6)
p V = PoV0
T T0
por permanecer la temperatura constante, se considera T = T0, y simplificando T, se obtiene:
pV = V0
de donde, expresandolo en forma de proporción, resulta:
p = V0
p0 V
En una transformación isoterma de un gas perfecto, Ia presión es inversamente proporcional al volumen.
Si en Ia fórmula correspondiente a una transformación isoterma:
P = V0
po V
se despeja la presión final, p:
p = Po V0
V
y se considera que el producto de la presión y volumen iniciales es constante, P0 V0 = constante, resulta la función: (6)
p = constante
V
que, representada en un diagrama de Clapeyron, es una hipérbole equilatera
El trabajo efectuado por el gas al aumentar su volumen desde el valor V0 hasta V será igual al area del rectángulo V0VAB; area que se calcula mediante el calculo integral y cuyo valor es:
V
L=2,303 po.V0 Iog Vo
fórmula que, considerando la ecuación de estado de los gases perfectos:
p V= n.R T è p0 V0 = n.R T0 (6)
puede también expresarse de la forma:
V
L =2,303 n R T0 log V0
Se dijo anteriormente que la energia interna de un gas dependia esencialmente de la temperatura; por lo tanto, si no cambia la temperatura del gas, tampoco cambiará su energia U = 0).interna (
U = 0 en el primer principio de laPor consigulente, haciendo termodinamica, resulta:
UL = Q - è L = Q – 0 è L = 0
En una transformación isoterma, el calor suministrado al sistema se emplea integramente en producir trabajo mecánico. (6)
Isobara
Es aquella en que la presión permanece constante. Si en la ley de los gases perfectos:
PV = p0 V0
En una transformación isóbara de un gas perfecto, el volumen es directamente proporcional a la temperatura absoluta.
Si en un diagrama de Clapeyron se representa la función correspondiente a una transformación isóbara (6)
Isocórica
Es aquella en la que el volumen permanece constante. Si en la ley de los gases perfectos:
pV = p0V0
T T0
En una transformación isocórica de un gas perfecto, la presión es directamente proporcional a la temperatura absoluta.
La consecuencia de que el volumen no pueda cambiar es que no cabe posibilidad de realizar trabajo de expansión ni de compresión del gas. (6)
Ley de Boyle
La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente. Esto quiere decir que si el volumen del contenedor aumenta, la presión en su interior disminuye y, viceversa, si el volumen del contenedor disminuye, la presión en su interior aumenta.
La ley de Boyle permite explicar la ventilación pulmonar, proceso por el que se intercambian gases entre la atmósfera y los alvéolos pulmonares. El aire entra en los pulmones porque la presión interna de estos es inferior a la atmosférica y por lo tanto existe un gradiente de presión. Inversamente, el aire es expulsado de los pulmones cuando estos ejercen sobre el aire contenido una presión superior a la atmosférica (1)
De la Ley de Boyle se sabe que la presión es directamente proporcional a la temperatura con lo cual la energía cinética se relaciona directamente con la temperatura del gas mediante la siguiente expresión:
Energía cinética promedio=3kT/2.
Donde k es la constante de Boltzmann. La temperatura es una medida de energía del movimiento térmico y a temperatura cero la energía alcanza un mínimo (el punto de movimiento cero se alcanza a 0 K). (3)
Ley de Charles
La ley de Charles establece que el volumen de un gas es directamente proporcional a su temperatura absoluta, asumiendo que la presión de mantiene constante. Esto quiere decir que en un recipiente flexible que se mantiene a presión constante, el aumento de temperatura conlleva un aumento del volumen. (1)
Ley de Dalton
La ley de Dalton establece que en una mezcla de gases cada gas ejerce su presión como si los restantes gases no estuvieran presentes. La presión específica de un determinado gas en una mezcla se llama presión parcial, p. La presión total de la mezcla se calcula simplemente sumando las presiones parciales de todos los gases que la componen. Por ejemplo, la presión atmosférica es:
Presión atmosférica (760 mm de Hg) = pO2 (160 mm Hg) + pN2 (593 mm Hg) + pCO2 (0.3 mm Hg) + pH2O (alrededor de 8 mm de Hg) (1)
Ley de Gay-Lussac
En 1802, Joseph Gay-Lussac publicó los resultados de sus experimentos que, ahora conocemos como Ley de Gay-Lussac. Esta ley establece, que, a volumen constante, la presión de una masa fija de un gas dado es directamente proporcional a la temperatura kelvin. (2)
Hipótesis de avogadro
La teoría de Dalton no explicaba por completo la ley de las proporciones múltiples y no distinguía entre átomos y moléculas. Así, no podía distinguir entre las posibles fórmulas del agua HO y H2O2, ni podía explicar por qué la densidad del vapor de agua, suponiendo que su fórmula fuera HO, era menor que la del oxígeno, suponiendo que su fórmula fuera O. El físico italiano Amedeo Avogadro encontró la solución a esos problemas en 1811. Sugirió que a una temperatura y presión dadas, el número de partículas en volúmenes iguales de gases era el mismo, e introdujo también la distinción entre átomos y moléculas. Cuando el oxígeno se combinaba con hidrógeno, un átomo doble de oxígeno (molécula en nuestros términos) se dividía, y luego cada átomo de oxígeno se combinaba con dos átomos de hidrógeno, dando la fórmula molecular de H2O para el agua y O2 y H2 para las moléculas de oxígeno e hidrógeno, respectivamente.
Las ideas de Avogadro fueron ignoradas durante casi 50 años, tiempo en el que prevaleció una gran confusión en los cálculos de los químicos. En 1860 el químico italiano Stanislao Cannizzaro volvió a introducir la hipótesis de Avogadro. Por esta época, a los químicos les parecía más conveniente elegir la masa atómica del oxígeno, 16, como valor de referencia con el que relacionar las masas atómicas de los demás elementos, en lugar del valor 1 del hidrógeno, como había hecho Dalton. La masa molecular del oxígeno, 32, se usaba internacionalmente y se llamaba masa molecular del oxígeno expresada en gramos, o simplemente 1 mol de oxígeno. Los cálculos químicos se normalizaron y empezaron a escribirse fórmulas fijas. Por la cual, las partículas contenidas en cada mol de cualquier elemento es igual a un número específico: 6,022x1023. (4)
Propiedades de los gases
El estado gaseoso es un estado disperso de la materia, es decir , que las moléculas del gas están separadas unas de otras por distancias mucho mayores del tamaño del diámetro real de las moléculas. Resuelta entonces, que el volumen ocupado por el gas (V) depende de la presión (P), la temperatura (T) y de la cantidad o numero de moles ( n).
Las propiedades de la materia en estado gaseoso son:
1. Se adaptan a la forma y el volumen del recipiente que los contiene. Un gas, al cambiar de recipiente, se expande o se comprime, de manera que ocupa todo el volumen y toma la forma de su nuevo recipiente.
2. Se dejan comprimir fácilmente. Al existir espacios intermoleculares, las moléculas se pueden acercar unas a otras reduciendo su volumen, cuando aplicamos una presión.
3. Se difunden fácilmente. Al no existir fuerza de atracción intermolecular entre sus partículas, los gases se esparcen en forma espontánea.
4. Se dilatan, la energía cinética promedio de sus moléculas es directamente proporcional a la temperatura aplicada.
Variables que afectan el comportamiento de los gases
1. PRESIÓN
Es la fuerza ejercida por unidad de área. En los gases esta fuerza actúa en forma uniforme sobre todas las partes del recipiente.
La presión atmosférica es la fuerza ejercida por la atmósfera sobre los cuerpos que están en la superficie terrestre. Se origina del peso del aire que la forma. Mientras más alto se halle un cuerpo menos aire hay por encima de él, por consiguiente la presión sobre él será menor.
2. TEMPERATURA
Es una medida de la intensidad del calor, y el calor a su vez es una forma de energía que podemos medir en unidades de calorías. Cuando un cuerpo caliente se coloca en contacto con uno frío, el calor fluye del cuerpo caliente al cuerpo frío.
La temperatura de un gas es proporcional a la energía cinética media de las moléculas del gas. A mayor energía cinética mayor temperatura y viceversa.
La temperatura de los gases se expresa en grados kelvin.


3. CANTIDAD
La cantidad de un gas se puede medir en unidades de masa, usualmente en gramos. De acuerdo con el sistema de unidades SI, la cantidad también se expresa mediante el número de moles de sustancia, esta puede calcularse dividiendo el peso del gas por su peso molecular.
4. VOLUMEN
Es el espacio ocupado por un cuerpo.
5. DENSIDAD
Es la relación que se establece entre el peso molecular en gramos de un gas y su volumen molar en litros.
Gas Real
Los gases reales son los que en condiciones ordinarias de temperatura y presión se comportan como gases ideales; pero si la temperatura es muy baja o la presión muy alta, las propiedades de los gases reales se desvían en forma considerable de las de gases ideales.
Concepto de Gas Ideal y diferencia entre Gas Ideal y Real.
Los Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llama gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.
1. - Un gas esta formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.
2. - Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.
3. - El numero total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio.
4. - El volumen de las moléculas es una fracción despreciablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el gas comprimido hasta dejarlo en forma líquida puede ser miles de veces menor. Por ejemplo, un gas natural puede licuarse y reducir en 600 veces su volumen.
5. - No actúan fuerzas apreciables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas sean tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que supongamos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.
6. - Los choques son elásticos y de duración despreciable. En los choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempo de choque es despreciable comparado con el tiempo que transcurre entre el choque de moléculas, la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo.

maria perdomo ing.petroqumica 005 -

Ley de los gases ideales

La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834.
La ecuación de estado
La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles) de un gas ideal es:

Donde:
= Presión
= Volumen
= Moles de Gas.
= Constante universal de los gases ideles
= Temperatura absoluta
La ecuación de estado para gases reales




Haciendo una corrección a la ecuación de estado de un gas ideal, es decir, tomando en cuenta las fuerzas intermoleculares y volúmenes intermoleculares finitos, se obtiene la ecuación para gases reales, también llamada ecuación de Van der Waals:
Donde:

= Presión del gas ideal
= Volumen del gas ideal
= Moles de gas.
= Constante universal de los gases ideales
= Temperatura.
y son constantes determinadas por la naturaleza del gas con el fin de que haya la mayor congruencia posible entre la ecuación de los gases reales y el comportamiento observado experimentalmente.
Teoría cinética molecular [editar]Esta teoría fue desarrollada por Ludwig Boltzmann y Maxwell. Nos indica las propiedades de un gas ideal a nivel molecular.

Todo gas ideal está formado por pequeñas partículas puntuales (átomos o moléculas).
Las moléculas gaseosas se mueven a altas velocidades, en forma recta y desordenada.
Un gas ideal ejerce una presión continua sobre las paredes del recipiente que lo contiene, debido a los choques de las partículas con las paredes de éste.
Los choques moleculares son perfectamente elásticos. No hay pérdida de energía cinética.
No se tienen en cuenta las interacciones de atracción y repulsión molecular.
La energía cinética media de la translación de una molécula es directamente proporcional a la temperatura absoluta del gas.
Ecuación general de los gases ideales
Partiendo de la ecuación de estado:

Tenemos que:

Donde R es la constante universal de los gases ideales, luego para dos estados del mismo gas, 1 y 2:

Para una misma masa gaseosa (por tanto, el número de moles «n» es constante), podemos afirmar que existe una constante directamente proporcional a la presión y volumen del gas, e inversamente proporcional a su temperatura.


Procesos realizados manteniendo constante un par de sus cuatro variables (n, P , V, T), de forma que queden dos; una libre y otra dependiente. De este modo, la fórmula arriba expuesta para los estados 1 y 2, puede ser operada simplificando 2 o más parámetros constantes. Según cada caso, reciben los nombres:


Ley de Boyle-Mariotte
También llamado proceso isotérmico. Afirma que, a temperatura y cantidad de materia constante, el volumen de un gas es inversamente proporcional a su presión:


Leyes de Charles y Gay-Lussac
En 1802, Louis Gay Lussac publica los resultados de sus experimentos, basados en los que Jacques Charles hizo en el 1787. Se considera así al proceso isobárico para la Ley de Charles, y al isocoro (o isostérico) para la ley de Gay Lussac.

Proceso isocoro (de Charles)





Ley de Avogadro
La Ley de Avogadro fue expuesta por Amedeo Avogadro en 1811 y complementaba a las de Boyle, Charles y Gay-Lussac. Asegura que en un proceso a presión y temperatura constante (isobaro e isotermo), el volumen de cualquier gas es proporcional al número de moles presente, de tal modo que:

Esta ecuación es válida incluso para gases ideales distintos. Una forma alternativa de enunciar esta ley es:
El volumen que ocupa un mol de cualquier gas ideal a una temperatura y presión dadas siempre es el mismo.
Un mol de cualquier gas ideal a una temperatura de 0 °C (273,15 K) y una presión de 1013,25 hPa ocupa un volumen de 22,4140 litros.

mara perdomo ing.petroqumica 005 -

Ley de los gases ideales

La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834.
La ecuación de estado
La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles) de un gas ideal es:

Donde:
= Presión
= Volumen
= Moles de Gas.
= Constante universal de los gases ideles
= Temperatura absoluta
La ecuación de estado para gases reales




Haciendo una corrección a la ecuación de estado de un gas ideal, es decir, tomando en cuenta las fuerzas intermoleculares y volúmenes intermoleculares finitos, se obtiene la ecuación para gases reales, también llamada ecuación de Van der Waals:
Donde:

= Presión del gas ideal
= Volumen del gas ideal
= Moles de gas.
= Constante universal de los gases ideales
= Temperatura.
y son constantes determinadas por la naturaleza del gas con el fin de que haya la mayor congruencia posible entre la ecuación de los gases reales y el comportamiento observado experimentalmente.
Teoría cinética molecular [editar]Esta teoría fue desarrollada por Ludwig Boltzmann y Maxwell. Nos indica las propiedades de un gas ideal a nivel molecular.

Todo gas ideal está formado por pequeñas partículas puntuales (átomos o moléculas).
Las moléculas gaseosas se mueven a altas velocidades, en forma recta y desordenada.
Un gas ideal ejerce una presión continua sobre las paredes del recipiente que lo contiene, debido a los choques de las partículas con las paredes de éste.
Los choques moleculares son perfectamente elásticos. No hay pérdida de energía cinética.
No se tienen en cuenta las interacciones de atracción y repulsión molecular.
La energía cinética media de la translación de una molécula es directamente proporcional a la temperatura absoluta del gas.
Ecuación general de los gases ideales
Partiendo de la ecuación de estado:

Tenemos que:

Donde R es la constante universal de los gases ideales, luego para dos estados del mismo gas, 1 y 2:

Para una misma masa gaseosa (por tanto, el número de moles «n» es constante), podemos afirmar que existe una constante directamente proporcional a la presión y volumen del gas, e inversamente proporcional a su temperatura.


Procesos realizados manteniendo constante un par de sus cuatro variables (n, P , V, T), de forma que queden dos; una libre y otra dependiente. De este modo, la fórmula arriba expuesta para los estados 1 y 2, puede ser operada simplificando 2 o más parámetros constantes. Según cada caso, reciben los nombres:


Ley de Boyle-Mariotte
También llamado proceso isotérmico. Afirma que, a temperatura y cantidad de materia constante, el volumen de un gas es inversamente proporcional a su presión:


Leyes de Charles y Gay-Lussac
En 1802, Louis Gay Lussac publica los resultados de sus experimentos, basados en los que Jacques Charles hizo en el 1787. Se considera así al proceso isobárico para la Ley de Charles, y al isocoro (o isostérico) para la ley de Gay Lussac.

Proceso isocoro (de Charles)





Ley de Avogadro
La Ley de Avogadro fue expuesta por Amedeo Avogadro en 1811 y complementaba a las de Boyle, Charles y Gay-Lussac. Asegura que en un proceso a presión y temperatura constante (isobaro e isotermo), el volumen de cualquier gas es proporcional al número de moles presente, de tal modo que:

Esta ecuación es válida incluso para gases ideales distintos. Una forma alternativa de enunciar esta ley es:
El volumen que ocupa un mol de cualquier gas ideal a una temperatura y presión dadas siempre es el mismo.
Un mol de cualquier gas ideal a una temperatura de 0 °C (273,15 K) y una presión de 1013,25 hPa ocupa un volumen de 22,4140 litros.